Towards Quantitative Inductive Families

Yulong Huang & Jeremy Yallop University of Cambridge, UK

TYPES, IT University of Copenhagen June 2024

Quantitative type theory (QTT)

- Linear (substructural) types + dependent types
- Runtime irrelevance in Agda
- Multiplicity in Idris2

Main >:t append_rhs 0 m : Nat 0 a : Type 0 n : Nat 1 ys : Vect m a 1 xs : Vect n a append : $(1 _ :$ Vect n a) -> $(1 - :$ Vect m a) \rightarrow Vect $(n + m)$ a append xs ys = ?append_rhs

append_rhs : Vect (plus n m) a

Quantitative type theory + Datatypes?

Indexed datatypes **Inductive families**

Indexed datatypes with $\begin{array}{ccc} 2 & 2 & 2 \end{array}$ quantities

Quantitative type theory + Datatypes?

$$
\frac{\gamma \triangleright z \quad \delta, p, r \triangleright s \quad \eta \triangleright n \quad \theta, q \triangleright A}{(\gamma \wedge \eta) \circledast_r (\delta + p\eta) \triangleright n \text{atrec}_{p,r}^q A z s n}
$$
\n[1] Abel et al.

 $(\Delta \mid \sigma_3 \mid \sigma_1 + \sigma_2) \odot \Gamma \vdash t_1 : (x :_r A) \otimes B$ $(\Delta, (\sigma_1 + \sigma_2) | \sigma_5, r' | 0) \odot \Gamma, z : (x :_r A) \otimes B \vdash C : \text{Type}_l$ $\frac{(\Delta,\sigma_1,(\sigma_2,r)\mid \sigma_4,s,s\mid \sigma_5,r',r')\odot\Gamma,x:A,y:B\vdash t_2:[(x,y)/z]C}{(\Delta\mid \sigma_4+s*\sigma_3\mid \sigma_5+r'*\sigma_3)\odot\Gamma\vdash \mathsf{let}\,(x,y)=t_1\,\mathsf{in}\,t_2:[t_1/z]C}\otimes_e$

[2] Moon et al.

 $0\Gamma, x \stackrel{0}{:} Nat \vdash P$ type $\Gamma \vdash M$ $\stackrel{\sigma}{\cdot}$ Nat $0\Gamma \vdash N_z \overset{\sigma}{:} P[zero/x]$ $0\Gamma, n \stackrel{0}{\colon} \text{Nat}, p \stackrel{\sigma}{\colon} P[n/x] \vdash N_s \stackrel{\sigma}{\colon} P[\text{succ}(n)/x]$ $\Gamma \vdash \text{rec}_{x,P} M$ {zero $\mapsto N_z$; succ $(n; p) \mapsto N_s$ } $\stackrel{\sigma}{:} P[M/x]$

T-SIGMAELIM Δ ; Γ_1 + a : Σx : ${}^qA_1.A_2$ Δ , x:A₁, y:A₂; Γ_2 , x:^qA₁, y:¹A₂ + b : B{(x, y)/z} Δ , z: $(\Sigma x$: ${}^qA_1.A_2)$; Γ_3 , z: ${}^r(\Sigma x$: ${}^qA_1.A_2)$ + B : type

 Δ ; $\Gamma_1 + \Gamma_2$ + let $(x, y) = a$ in $b : B\{a/z\}$

[3] Atkey $[4]$ Choudhury et al.

Motivation

- Have a theoretical foundation of datatypes in QTT
- Have a unified framework for future research
- Investigate problems like pattern matching elimination

What we want from datatypes

- Expressive and intuitive

Pairs, vectors, trees (etc.) with different usages for each component

- Compiler-friendly

Small effort to type-check, easy to implement

- Syntactically well-behaved Substitution, reduction, erasure, …

- Semantically meaningful Initial algebra semantics

Structure of this talk

I. Typing rules and principles of QTT

Domain of quantities Types need nothing No erased at runtime Join over branches

II. Extending QTT with datatypes \int Linear Lists

Vectors with quantities

I. Typing rules and principles of QTT

Zero, One, and Many

Each variable is assigned with a quantity from $Q = \{0, 1, \omega\}$, marking its runtime usage.

Zero, One, and Many

We can describe more situations using an order and a few operations over the quantities.

Order: $0 \leq \omega \geq 1$.

QTT judgements

 $m: dom(\Gamma) \longrightarrow Q$, where $m(x)$ is runtime usage of *x*

The variable rule

Note: we abuse the notation and implicitly cast modes to quantities here.

Principle I: Types need nothing

$$
\frac{\Gamma \vdash A \stackrel{0}{:} \text{Type} \; ; \; \underline{\theta}}{\Gamma \vdash \Pi x \stackrel{q}{:} A \cdot B \stackrel{0}{:} \text{Type} \; ; \; \underline{\theta}}}{\Gamma \vdash \Pi x \stackrel{q}{:} A \cdot B \stackrel{0}{:} \text{Type} \; ; \; \underline{\theta}}
$$

Type-formers like Π are judged in the erased mode.

Lambda and application

TY-LAM $\frac{\Gamma, x{:}A \vdash M \stackrel{\sigma}{:} B \; ; \; \underline{m}, q}{\Gamma \vdash \lambda x {\stackrel{q}{:}} A. M \stackrel{\sigma}{:} \Pi x {\stackrel{q}{:}} A. B \; ; \; \underline{m}}$

If the fresh variable *x* is used *q* times, then we get a function of type Πx ² A. B. *q*

TY-APP $\sigma' = 0 \Leftrightarrow (\sigma = 0 \vee q = 0)$ $\underbrace{\Gamma \vdash M \overset{\sigma}{:} \Pi x \overset{q}{:} A.B \; ; \; \underline{m} \quad \Gamma \vdash N \overset{\sigma'}{\:} A \; ; \; \underline{n}}$ $\Gamma \vdash M N \overset{\sigma}{:} B[M/x] ; m + qn$

Variables are used *m* times in *M* and *n* times in *N*. So, the total usage is $m + qn$, since *N* is used *q* times by function *M*.

Note: operations on Q extend pointwise to quantity assignments.

Principle II: No erased at runtime

TY-LAM $\Gamma, x:A \vdash M \overset{\sigma}{:} B; \underline{m}, q$ $\Gamma \vdash \lambda x$: A. M $\stackrel{\sigma}{:}\Pi x$: A. B; m

TY-APP $\sigma' = 0 \Leftrightarrow (\sigma = 0 \vee q = 0)$ $\Gamma \vdash M \overset{\sigma}{:} \Pi x \overset{q}{:} A. B ; \underline{m} \quad \Gamma \vdash N \overset{\sigma'}{\:} A ; \underline{n}$ $\Gamma \vdash M\ N \stackrel{\sigma}{\colon} B[M/x]\;;\; \underline{m + q\underline{n}}$

N is erased ($\sigma' = 0$) iff:

(1). The application is erased ($\sigma' = 0$).

(2). *M* doesn't use its argument $(q = 0)$.

Principle III: Join over branches

TY-ELIMBOOL

$$
\Gamma, b: \text{Bool} \vdash P \stackrel{0}{:} \text{Type} \; ; \; \underline{\theta}
$$
\n
$$
\Gamma \vdash L \stackrel{\sigma}{:} \text{Bool} \; ; \; \underline{l}
$$
\n
$$
\Gamma \vdash M \stackrel{\sigma}{:} P[\text{tt}/b] \; ; \; \underline{m}
$$
\n
$$
\Gamma \vdash \text{if}_{P} L \text{ then } M \text{ else } N \stackrel{\sigma}{:} P[L/b] \; ; \; \underline{l} + (\underline{m} \sqcup \underline{n})
$$

Order: $0 \leq \omega \geq 1$.

p ⊔ *q* : the variable is used *p* or *q* times,

taking the least upper bound of *p* and *q*.

Variables are used *l* times in *L*, and $(\underline{m} \sqcup \underline{n})$ times in the branches.

So, the total usages are $\underline{l} + (\underline{m} \sqcup \underline{n})$.

Sub-usaging

$$
\text{TY-SUB-USAGE} \newline \Gamma \vdash M \stackrel{\sigma}{:} A \; ; \; \underline{m} \newline \underline{m} \leq \underline{m'} \newline \overline{\Gamma \vdash M \; : \; A \; ; \; \underline{m'}}
$$

We can over-estimate the resources required by *M*.

Syntactic properties

Lemma (Substitution). The following rule for substitution is admissible:

TY-SUBST
\n
$$
\Gamma, x:A \vdash M \stackrel{\sigma}{:} B \; ; \; \underline{m}, q \quad \Gamma \vdash N \stackrel{\sigma'}{:} A \; ; \; \underline{n}
$$
\n
$$
\sigma' = 0 \Leftrightarrow q = 0
$$
\n
$$
\Gamma \vdash M[N/x] \stackrel{\sigma}{:} B[N/x] \; ; \; \underline{m} + q\underline{n}
$$

Similar to the application rule.

Lemma (Reduction). If $\Gamma \vdash M : A : m$ and M reduces to M', then $\Gamma \vdash M' : A : m$ is derivable. *σ σ*

II. Extending QTT with datatypes

Using means matching

Using *M* once is matching/unfolding it once.

For example, if *M* is a pair, then

let $(x, y) = M$ in N

counts as using *M* once.

Usage of *M'*s components are specified by the type of *M*.

Linear lists: signature and type former

data $List^{11}(A:Type):Type$ where $[\cdot]:$ List¹¹A $\Box: \Box : (x^{\frac{1}{2}}A)(xs^{\frac{1}{2}}\mathbf{List}^{11}A) \to \mathbf{List}^{11}A$

Head and tail can be used only once.

TY-LIST $\Gamma \vdash A \overset{0}{:} \text{Type}$; <u>0</u> $\Gamma \vdash List^{11}A^0$: Type; θ

Principle I: Types need nothing.

It's easy to extend this to vectors, we'll focus on lists for now!

Linear lists: constructors

TY-NIL
\n
$$
\frac{\Gamma \vdash A \overset{0}{:} \text{Type} \; ; \; \underline{\theta}}{\Gamma \vdash [\;] \overset{\sigma}{:} \text{List}^{11}A \; ; \; \underline{\theta}}
$$

No resource required for Nil.

TY-Cons
\n
$$
\Gamma \vdash M \stackrel{\sigma}{:} A ; \underline{m}
$$
\n
$$
\frac{\Gamma \vdash N \stackrel{\sigma}{:} \mathbf{List}^{11} A ; \underline{n}}{\Gamma \vdash M :: N \stackrel{\sigma}{:} \mathbf{List}^{11} A ; \underline{m} + \underline{n}}
$$

Resources are summed up in constructors, like what we did in applications.

TY-ELIMLIST

 Γ , ls:**List**¹¹ $A \vdash P$ ⁰: Type; 0 $\Gamma \vdash L$ ^{σ} List¹¹ A ; l $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; m $\Gamma, x:A, xs:$ **List**¹¹A, $r: P[xs/ls] \vdash N \stackrel{\sigma}{:} P[x::xs/ls]$; <u>n</u>, 1, 0, 1 $\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] ; l + m + \omega n$

It looks messy…

The typing rules are conventional.

TY-ELIMLIST

 $\Gamma, ls:$ **List**¹¹ $A \vdash P$ ⁰: Type; 0 $\Gamma \vdash L \overset{\sigma}{:} {\mathbf{List}}^{11}A : \boxed{l}$ $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; \boxed{m} $\Gamma, x:A, xs:$ **List**¹¹A, $r: P[xs/ls] \vdash N \stackrel{\sigma}{:} P[x::xs/ls]$; $\underline{n}, 1, 0, 1$ $\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] ; \underline{l} + \underline{m} + \omega \underline{n}$

The typing rules are conventional.

We focus on quantities.

P is a type that needs nothing.

Variables are used *l* times in *L* and *m* times in the Nil case *M*.

TY-ELIMLIST

 Γ , ls:**List**¹¹ $A \vdash P$ ⁰: Type; 0 $\Gamma \vdash L \overset{\sigma}{:}$ List¹¹ $A : l$ $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; m $\Gamma, x:A, xs:$ **List**¹¹A, $r: P[xs/ls] \vdash N \stackrel{\sigma}{:} P[x::xs/ls]$; $\frac{x}{n}, \frac{xs}{1}, \frac{r}{0}, \frac{r}{1}$ $\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] ; l + m + \omega n$

At the Cons case: Usages of variables in the context is *n*.

Head *x* and the induction hypothesis *r* are used once.

The tail *xs* is only there for typing, hence it has usage 0.

TY-ELIMLIST

 Γ , ls:**List**¹¹ $A \vdash P$ ⁰: Type; 0 $\Gamma \vdash L$ ^{σ} List¹¹ A ; l $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; m $\Gamma, x:A, xs:$ **List**¹¹A, $r: P[xs/ls] \vdash N \stackrel{\sigma}{:} P[x::xs/ls]$; <u>n</u>, 1, 0, 1 $\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] ; l + m + \omega n$

If $L = []$:

The eliminator reduces to *M* that requires resources *m*.

If $L = Hd::Tl:$

N is evaluated many times until it hits the base case *M*, using resources $m + \omega n$ (the exact number of iterations is unknown).

TY-ELIMLIST

 Γ , ls:**List**¹¹ $A \vdash P$ ⁰: Type; 0 $\Gamma \vdash L$ ^{σ} List¹¹ A ; l $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; m $\Gamma, x:A, xs:$ **List**¹¹A, $r: P[xs/ls] \vdash N \stackrel{\sigma}{:} P[x::xs/ls]$; <u>n</u>, 1, 0, 1 $\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] ; l + m + \omega n$

Principle III: Join over branches.

We join the usages of two cases, and add the usages in the list *L*, getting $\underline{l} + (\underline{m} \sqcup (\underline{m} + \omega \underline{n})),$ which simplifies to $\underline{l} + (m + \omega \underline{n})$.

Use it now, or use it later

Sometimes, we want to use the tail directly instead of recursively.

TY-ELIMLIST

 Γ , ls: $\mathbf{List}^{11}A \vdash P$: Type; 0 $\Gamma \vdash L$ ^{σ} List¹¹ A ; l $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; m $\Gamma, x:A, xs:List^{11}A, r: P[xs/ls] \vdash N \overset{\sigma}{:} P[x::xs/ls]$; $\frac{x}{n}, \frac{x}{1}, \frac{y}{1}, \frac{y}{1}$ The induction hypothesis r is unused. $\overline{\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] \; ; \; \underline{l} + (\underline{m} \sqcup \underline{n})}$

At the Cons case: Usages of variables in the context is *n*. Head *x* and tail *xs* are each used once.

Use it now, or use it later

TY-ELIMLIST

 $\Gamma, ls:$ **List**¹¹ $A \vdash P$ ⁰: Type; 0 $\Gamma \vdash L$ ^{σ} List¹¹ A ; l $\Gamma \vdash M \overset{\sigma}{:} P[[]/ls]$; m $\Gamma, x:A, xs:$ **List**¹¹A, $r: P[xs/ls] \vdash N \stackrel{\sigma}{:} P[x::xs/ls]$; <u>n</u>, 1, 1, 0 $\Gamma \vdash Elim_{list}(P, L, M, (x, xs, r).N) \stackrel{\sigma}{:} P[L/ls] ; \underline{l + (m \sqcup n)}$

So, the total usages are $\underline{l} + (\underline{m} \sqcup \underline{n}),$ similar to Bool.

Putting it together

Note: recall that $0 \le \omega \ge 1$, so (q_1, q_2) can only be $(0,1)$ or $(1,0)$.

Putting it together

The formula covers all situations of q_{ℓ} . $q_{\it 2} = 0{:}~\underline{l} + (\underline{m} ~\sqcup~ \underline{n})$ $q_2 = 1: l + (m \sqcup (m + \omega n))$

A glance at Vectors

data $\text{Vec}^{pq}(A:Type) : (n : Nat) \rightarrow Type$ where $[] : \mathbf{Vec}^{pq} A 0$ \therefore : $(n^0 : \mathbf{Nat})(x^p : A)(xs^q : \mathbf{Vec}^{pq}A \ n) \rightarrow \mathbf{Vec}^{pq}A \ s(n)$

Vector size *n* is erased. Head and tail can be used *p* and *q* times each.

TY-VEC-PQ $\frac{\Gamma \vdash A \overset{0}{:} \text{Type} \; ; \; \underline{\theta} \quad \Gamma \vdash n \overset{0}{:} \textbf{Nat} \; ; \; \underline{\theta}}{\Gamma \vdash \textbf{Vec}^{pq} A \; n \overset{0}{:} \text{Type} \; ; \; \underline{\theta}}$

Types need nothing.

Note: it means that one could define a datatype Vec^{pq} for all (p, q) in Q. Note: we don't specify quantities for parameters and indices because they cannot be "used" at runtime.

Vectors: constructors

Principle II: No erased at runtime. The constraints make sure there is no erased term at runtime.

Resources are summed up like what we did in applications.

Vectors: eliminators

TY-ELIMVEC-PQ $\Gamma, n:$ **Nat**, *ls*:**Vec**^{*pq*}*A* $n \vdash P$ ^{*e*} Type; <u>*o*</u> $\Gamma \vdash L$ ["] **Vec**^{pq}A n; l $\Gamma \vdash M \overset{\sigma}{:} P[0/n, []/ls] ; m$ $\Gamma, n: \mathbf{Nat}, x: A, xs: \mathbf{List}^{pq}A, r: P[n/n, xs/ls] \vdash N \overset{\sigma}{:} P[s(n)/n, x:: xs/ls] ; \underline{n}, 0, p, q_1, q_2]$ $q_1+q_2 \leq q$

 $\Gamma \vdash Elim_{list}(P, L, M, (n, x, xs, r). N) \overset{\sigma}{:} P[n/n, L/ls]$; $\underline{l} + (m \sqcup (q_2m + (q_2 + 1)n))$

TL;DR: It's basically the same as the list eliminator.

Now, and next

Progress so far:

- A general typing scheme for inductive-family definitions with quantities
- Proof of substitution and reduction for the general scheme (on paper)
- A prototype implementation of the type checker in OCaml

Future work:

- Resource-aware operational semantics and theorems (erasure, linearity, etc.)
- Pattern matching elimination (internal in QTT)
- Initial algebra semantics and formalization

Thank you!

…and questions?

Speaker email: yh419@cam.ac.uk

References

[1] Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. A graded modal dependent type theory with a universe and erasure, formalized. Proc. ACM Program. Lang., $7(\text{ICFP}):920-954, 2023$.

[2] Benjamin Moon, Harley Eades III, and Dominic Orchard. Graded modal dependent type theory. In European Symposium on Programming, pages 462–490. Springer International Publishing Cham, 2021.

[3] Robert Atkey. Polynomial time and dependent types. Proc. ACM Program. Lang., 8(POPL):2288– 2317, 2024.

[4] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A graded dependent type system with a usage-aware semantics. Proc. ACM Program. Lang., 5(POPL):1–32, 2021.