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Quantitative type theory (QTT)

- Linear (substructural) types + dependent types

- Runtime irrelevance in Agda

- Multiplicity in Idris2

Main >:t append_rhs

  0 m : Nat

  0 a : Type

  0 n : Nat

  1 ys : Vect m a

  1 xs : Vect n a

-------------------------------------

append_rhs : Vect (plus n m) a 

append : 

  (1 _ : Vect n a) -> 

  (1 _ : Vect m a) -> 

  Vect (n + m) a 

append xs ys = ?append_rhs 



Quantitative type theory + Datatypes?

Inductive families Indexed datatypes

? ? ?
Indexed datatypes with 

quantities



Quantitative type theory + Datatypes?

[1] Abel et al.
[2] Moon et al.

[3] Atkey [4] Choudhury et al.



Motivation

- Have a theoretical foundation of datatypes in QTT

- Have a unified framework for future research

- Investigate problems like pattern matching elimination



What we want from datatypes

- Expressive and intuitive

Pairs, vectors, trees (etc.) with different usages for each component

- Compiler-friendly

Small effort to type-check, easy to implement

- Syntactically well-behaved

Substitution, reduction, erasure, …

- Semantically meaningful

Initial algebra semantics



Structure of this talk

Domain of quantities

Types need nothing

No erased at runtime

Join over branches

I. Typing rules and principles of QTT

II. Extending QTT with datatypes 
Linear Lists

Vectors with quantities



I. Typing rules and principles of QTT



Zero, One, and Many

Each variable is assigned with a quantity from Q = {0, 1, ω}, marking its runtime 
usage.

Quantity of a variable Meaning

0 unused

1 used linearly

ω used non-linearly



Zero, One, and Many

We can describe more situations using an order and a few operations over the quantities.

Order: 0 ≤ ω ≥ 1.

Quantity of a variable Meaning

p  +  q 
used p times in an expression, and then q times in 

another expression

p · q 
used p times in an expression, and that expression 

is used q times

p ⊔ q 
used p or q times, taking the least upper bound of 

p and q



QTT judgements

σ : type-checking modes from {    0     ,     1     }
erased runtime

m : dom(Γ)      Q, where m(x) is runtime usage of x



The variable rule

σx(x) = σ
σx(y) = 0 

Note: we abuse the notation and implicitly cast modes to quantities here.



Principle I: Types need nothing

Type-formers like Π are judged in the erased mode.



Lambda and application

If the fresh variable x is used q times,

then we get a function of type Πx : A. B.
q

Variables are used m times in M and n times in N.

So, the total usage is m + qn, 

since N is used q times by function M.

Note: operations on Q extend pointwise to quantity assignments.



Principle II: No erased at runtime

N is erased (σ' = 0) iff:

(1). The application is erased (σ' = 0).

(2). M doesn’t use its argument (q = 0) .



Principle III: Join over branches

Order: 0 ≤ ω ≥ 1.

p ⊔ q : the variable is used p or q times, 

          taking the least upper bound of p and q.

Variables are used l times in L,

and (m ⊔ n) times in the branches.

So, the total usages are l + (m ⊔ n). 



Sub-usaging

We can over-estimate the resources required by M.



Syntactic properties

Lemma (Reduction). If Γ ⊢ M : A ; m and M reduces to M', then Γ ⊢ M' : A ; m is  

derivable.

Lemma (Substitution). The following rule for substitution is admissible:

σ σ

Similar to the application rule.



II. Extending QTT with datatypes 





Using means matching

Using M once is matching/unfolding it once.

Usage of M’s components are specified by the type of M.

let (x, y) = M  in  N

For example, if M is a pair, then

counts as using M once.



Linear lists: signature and type former

Head and tail can be used only once.

Principle I: Types need nothing.

It’s easy to extend this to vectors, we’ll focus on lists for now!



Linear lists: constructors

No resource required for Nil.

Resources are summed up in constructors,

like what we did in applications.



Linear lists: eliminator

It looks messy…



Linear lists: eliminator

It looks messy…

but it’s just about typing and quantities.



Linear lists: eliminator

The typing rules are conventional.



The typing rules are conventional.

Linear lists: eliminator

We focus on quantities.



Linear lists: eliminator

P is a type that needs nothing.

Variables are used l times in L and 
m times in the Nil case M.



Linear lists: eliminator

At the Cons case: 

Usages of variables in the context is n.

Head x and the induction hypothesis r 

are used once. 

The tail xs is only there for typing, 

hence it has usage 0.

x xs r



Linear lists: eliminator

If L = Hd :: Tl :

N is evaluated many times until it 

hits the base case M, using resources 

m + ωn (the exact number of 

iterations is unknown).

If L = [] :

The eliminator reduces to M that 

requires resources m.



Linear lists: eliminator

Principle III: Join over branches.

We join the usages of two cases, 

and add the usages in the list L, 

getting l + (m ⊔ (m + ωn)), which 

simplifies to l + (m + ωn).



Use it now, or use it later

At the Cons case: 

Usages of variables in the context is n.

Head x and tail xs are each used once. 

The induction hypothesis r is unused.
x xs r

Sometimes, we want to use the tail directly instead of recursively.  



Use it now, or use it later

So, the total usages are l + (m ⊔ n),

similar to Bool.



Putting it together

Use it now, or use it later

The combined usage can’t be greater

(than 1)

Note: recall that 0 ≤ ω ≥ 1, so (q1, q2) can only be (0,1) or (1,0).



Putting it together

The formula covers all situations of q2.

q2 = 0: l + (m ⊔ n)

q2 = 1: l + (m ⊔ (m + ωn))



A glance at Vectors

Vector size n is erased.

Head and tail can be used p and q times each. 

Types need nothing.

Note: it means that one could define a datatype Vecpq for all (p, q) in Q.

Note: we don’t specify quantities for parameters and indices because they cannot be “used” at runtime. 



Vectors: constructors

Resources are summed up like what we did in 
applications.

Principle II: No erased at runtime.
The constraints make sure there is no erased 
term at runtime.



Vectors: eliminators

TL;DR: It’s basically the same as the list eliminator.



Now, and next

Progress so far:

- A general typing scheme for inductive-family definitions with quantities

- Proof of substitution and reduction for the general scheme (on paper)

- A prototype implementation of the type checker in OCaml

Future work:

- Resource-aware operational semantics and theorems (erasure, linearity, etc.)

- Pattern matching elimination (internal in QTT)

- Initial algebra semantics and formalization



Thank you!

…and questions?

Speaker email: yh419@cam.ac.uk
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